BT -5/ D-19 HEAT TRANSFER

Paper-ME-305N

Time allowed: 3 hours]

[Maximum marks: 75

Note:- Attempt five questions in all selecting at least one question from each unit. All questions carry equal marks.

Unit- I

- 1. (a) Define and distinguish between (i) steady state, (ii) unsteady state, and (iii) transients state of heat transfer.
 - (b) A solar panel, im x 1.25m receives solar radiation 1500 watts. Calculate surface temperature of the panel if the ambient temperature is 25°C and the convective heat transfer coefficient of the air film over the surface of panel is 12.5W/m²-deg.
- (a) Define thermal diffusivity and explain its physical significance.
 - (b) State and explain different types of boundary condition applied to heat conduction problems.
 10

Unit-II

 (a) Differentiate between mechanisms of heat transfer by free and forced convection.

- (b) A plate 60 cm high and 30 cm wide, having a surface temperature at 35°C, is in contact with air at 20°C. If the observed convective heat transfer rate is 45W for each side, compute the average convection coefficient.
- 4. A steel pipe, 20cm diameter and 15m long, carrying hot gas at 300°C is placed in still air at 25°C. Determine the heat loss by natural convection if the convective heat transfer coefficient is approximated by the relation.

$$h = 1.32 \left(\frac{\Delta t}{d}\right)^{1/4}$$
 w/m²-deg where d is in meters and Δt is in

degrees Kelvin.

Unit-III

- A black body in the form of cube 1m long on the side has a temperature 1000k. Find the radiant energy flux density and the total energy emitted by the black body cube.
- A stainless steel plate (∈ = 0.6) at 100°C faces a brick wall
 (∈ = 0.75) at 500°C. Estimate the heat flux and the radiant heat transfer coefficient.

Unit-IV

5

- 7. (a) How does a fin enhance heat transfer at a surface? 4
 - (b) What are the various types of fins?

35126

- (c) Enumerate the various assumptions made in the formation of energy equation for one-dimensional heat dissipation from an extended surface.
- 8. (a) What is a heat exchanger? How heat exchangers are classified?
 - (b) Discuss the importance of heat exchangers for industrial use.
 - (c) Sketch a two-shell pass, Your tube pass, reversed current heat exchanger. Label the different parts.